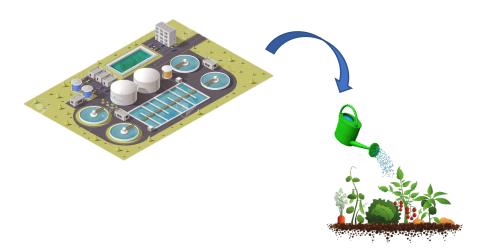


Tecnologie smart per l'irrigazione con acque reflue urbane depurate e valutazione degli effetti del riuso

V. Alagna, G. Mancuso, G. D. Perulli, B. Morandi (CIRI-FRAME/UNIBO); A. Chirieleison, G. Giardina (IRRITEC); A. Ceccaroni, M. Collina (HERA); <u>A. Toscano</u> (CIRI-FRAME/UNIBO)

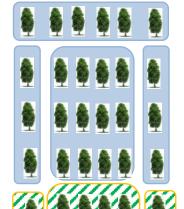


Obiettivo principale:

✓ Favorire il *riutilizzo diretto* del refluo trattato

Obiettivi specifici:

- Realizzazione di un impianto di microirrigazione (drip irrigation) «smart», appositamente progettato, interconnesso con il sistema ICT realizzato in fase 1
- Valutazione del potenziale **fertirriguo** delle acque reflue depurate
- Studio degli **effetti** del riuso sul suolo, sulle colture e sul sistema suolo-pianta (utilizzo dei nutrienti presenti nelle acque reflue)
- Valutazione delle **prestazioni** (uniformità di erogazione, occlusione) e durabilità dei dispositivi installati (ali gocciolanti, sistemi di filtrazione)
- Verifica della validità del sistema prototipale proposto



Pesco: cv. Aliblanca

Acqua di rete + concimazione standard

Acqua secondaria + concimazione integrativa

Acqua secondaria

Pomodoro: cv. Big Rio

Acqua di rete + concimazione standard

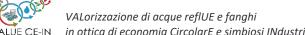
Acqua terziaria + concimazione integrativa

Acqua terziaria

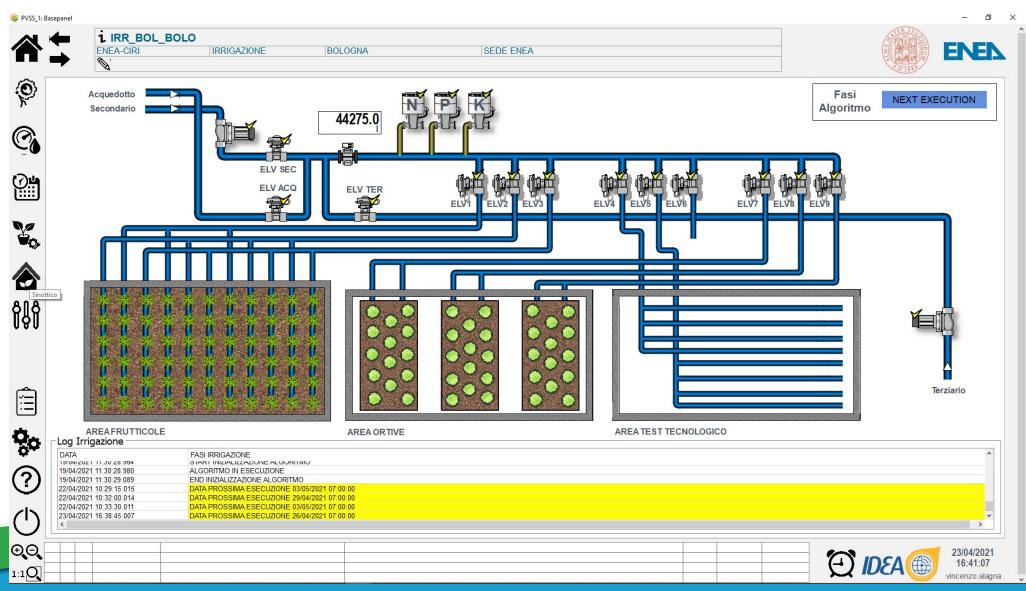
Sonde di umidità, temperatura e conducibilità elettric

Obiettivo: Realizzazione di un impianto di microirrigazione (drip irrigation) «smart», appositamente progettato, interconnesso con il sistema ICT realizzato in fase 1

Risultato impianto prototipale smart **completato**

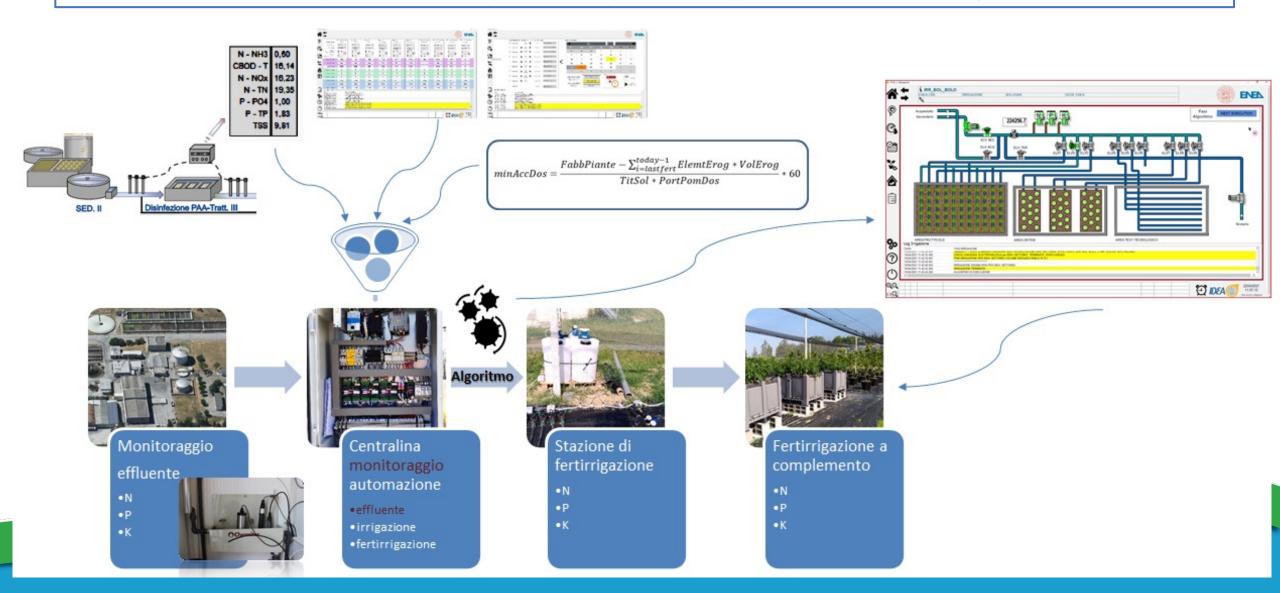


a) area sperimentale sotto rete antigrandine, b) centralina di monitoraggio della qualità delle acque trattate, automazione e controllo della fertirrigazione, c) sistema fertirriguo e d) disposizione delle colture (pomodoro e pesco)



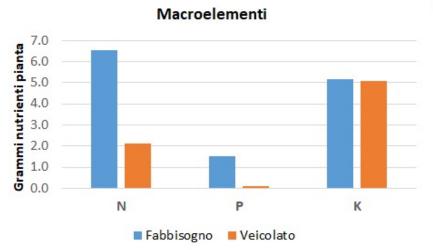
Sinottico del sistema prototipale

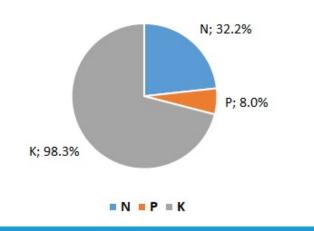
Panoramica del sistema prototipale sviluppato



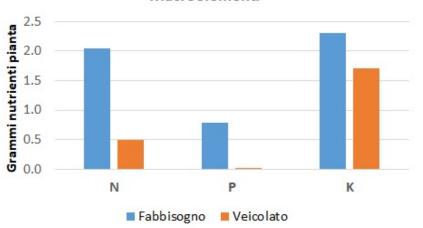
Obiettivo: Valutazione del potenziale fertirriguo delle acque reflue depurate mediante tecnologie smart

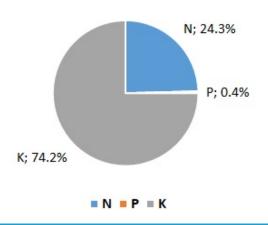
POR FESR EMILIA-ROMAGNA 2014/2020





Risultato potenziale fertirriguo delle acque reflue depurate


Risparmio % macroelementi


Pomodoro (Acqua reflua terziaria)

Macroelementi

Risparmio % macroelementi

Analisi su colture di Pesco e Pomodoro

Raccolta di campioni di tessuti vegetali, quali germogli e frutti, con lo scopo di individuare il **metodo analitico** più idoneo alla valutazione della componente microbiologica eventualmente presente all'interno degli stessi nonché lo status nutrizionale, fisiologico e qualitativo delle piante e dei frutti

Sicurezza alimentare:

- Internalizzazione batterica (E. coli) in frutti e germogli
- Analisi microbiologica classica

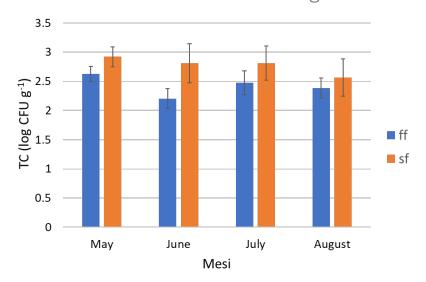
 Prelievo di campioni a diversa profondità per analisi chimiche e microbiologiche

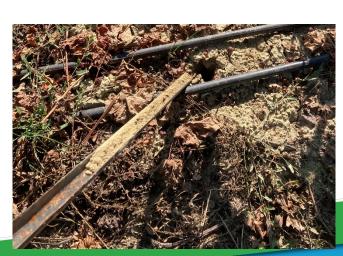


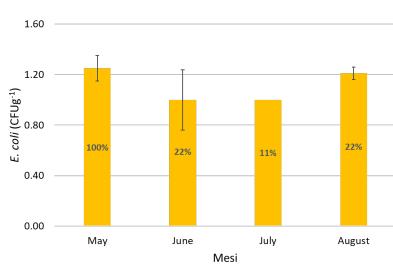
Pesco: Analisi chimiche e microbiologiche delle acque reflue utilizzate per irrigare la parcella pilota sperimentale

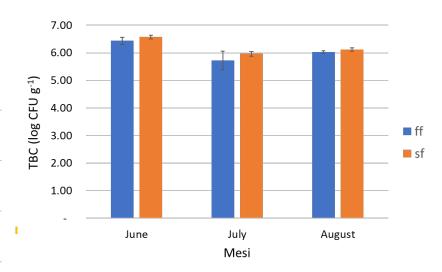
Parametri chimici	Acqua irrigua					
	Refluo secondario	Rete				
рН	7.80 ± 0.05	7.42 ± 0.02				
EC (dS m ⁻¹)	1.11 ± 0.06	0.63 ± 0.03				
NH ₄ -N	0.09 ± 0.01	0.07 ± 0.01				
NO ₃ -N	3.40 ± 0.60	2.83 ± 0.02				
P (mg L ⁻¹)	0.08 ± 0.01	0.04 ± 0.01				
K (mg L ⁻¹)	2.44 ± 0.30	0.04 ± 0.01				
Ca (mg L ⁻¹)	9.92 ± 0.51	10.5 ± 0.05				
Mg (mg L ⁻¹)	2.37 ± 0.13	2.41 ± 0.02				
S (mg L ⁻¹)	2.38 ± 0.06	2.09 ± 0.02				
Na (mg L ⁻¹)	12.7 ± 0.70	4.84 ± 0.05				
CI (mg L ⁻¹)	23.5 ± 1.05	7.76 ± 0.24				
Al (μg L ⁻¹)	18.5 ± 1.04	14.9 ± 1.10				
Li (μg L ⁻¹)	23.9 ± 0.04	23.5 ± 0.02				
B (μg L ⁻¹)	177 ± 6.71	193 ± 2.00				
Ba (μg L ⁻¹)	0.74 ± 0.35	4.68 ± 0.13				
Si (μg L ⁻¹)	21.1 ± 5.37	22.3 ± 3.15				
Sn (μg L ⁻¹)	87.9 ± 1.57	87.3 ± 0.90				
Sr (μg L⁻¹)	79.9 ± 4.20	93.8 ± 0.25				

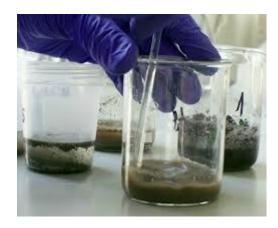
Target microorganisms	STW	TW
E. coli (CFU 100 mL ⁻¹)	9200 ± 2922	absent
Total Coliforms (CFU 100 mL ⁻¹)	161400 ± 68962	absent
Salmonella spp. (presence/absence)	absent	absent
Total Bacteria Count 30 °C (CFU mL-1)	4308 ± 1359	absent







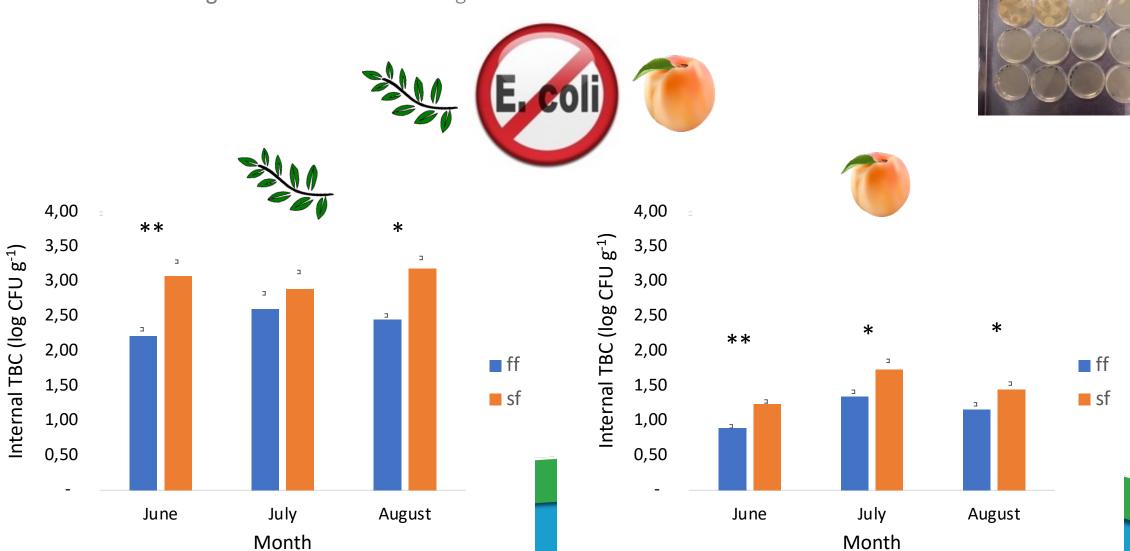

Pesco: Caratterizzazione microbiologica suolo

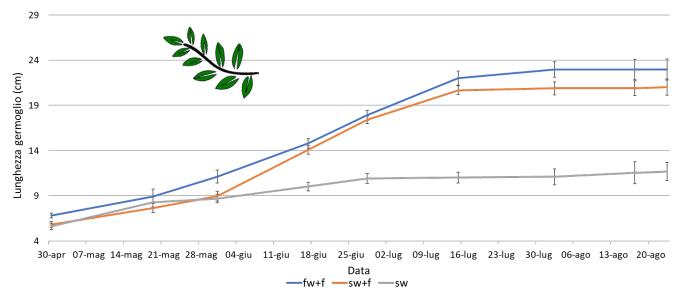


Caratterizzazione chimica del suolo

Suolo				
Trattamento	pН	EC		
		μS cm ⁻¹		
0-20 cm				
FW+F	7.96 b	242 b		
SW+F	8.35 a	437 a		
SW	8.24 ab	402 a		
Significatività	*	**		
20-40 cm				
FW+F	7.96 b	369 b		
SW+F	8.30 a	597 a		
SW	8.18 ab	671 a		
Significatività	*	*		

Status nutrizionale delle **piante**




Caratterizzazione microbiologica a livello dei tessuti vegetali

Pesco:

Rilievi allometrici e fisiologici a livello dei tessuti vegetali

Resa e parametri qualitativi del frutto

VALorizzazione di acque reflUE e fanghi VALUE CE-IN in ottica di economia CircolarE e simbiosi INdustriale

Pomodoro:

Caratterizzazione chimica del suolo

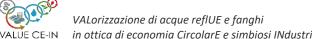
Suolo						
Trattamento	pН					
		μS/cm				
0-20 cm						
FW+F	8.13	216 b				
TW+F	8.20	356 a				
TW	8.02	208 b				
Significatività	ns	*				
20-40 cm						
FW+F	8.12	226				
TW+F	8.15	278				
TW	8.24	234				
Significatività	ns	ns				

Pomodoro:

Status nutrizionale delle **piante**

Resa e parametri qualitativi del frutto

Obiettivo: Studio degli effetti del riuso sull'impianto irriguo (occlusione), attraverso la valutazione delle prestazioni (uniformità di erogazione) e durabilità dei dispositivi installati (ali gocciolanti, sistemi di filtrazione)


Efficienza idraulico-tecnologica (prove di portata)

Uniformità d'erogazione o EUf %

$$EUf = 100 * \frac{q_{ql}}{q_m}$$
 q_{ql} è la portata media del 25% dei gocciolatori che hanno la portata più bassa tra quelli testati (l/h), q_m è la portata media di tutti i gocciolatori testati (l/h)

Coefficiente di uniformità di Christiansen o CU %

$$CU \subseteq \left(1 - \frac{\sum\limits_{i=1}^{n} |Q_i - Q_m|}{N \cdot Q_m}\right) \cdot 100 \quad Q_i \text{ rappresenta la portata erogata da ciascun gocciolatore (I/h), } Q_m \text{ la portata media (I/h) ed N il numero complessivo di gocciolatori presenti.}$$

Efficienza idraulico-tecnologica:

Prove di portata **erogatori iDrop**

Nome prodotto	N°	Ore	Epoca di –	Tipologia di acque e tesi sperimentale								
		complessive di	campionamento –	FW+F			SW+F			SW		
		funzionamento		Q I/h	CU %	EUf %	Q I/h	CU %	EUf %	QI/h	CU %	EUf %
Gocciolatore	30	93	Inizio stagione	2,03	97,8	98,4	1,95	97,7	98,4	1,95	97,9	98,4
iDrop	op	93	Fine stagione	2,01	92,4	95,8	1,88	95,2	97,1	1,87	93,7	97,6

Efficienza idraulico-tecnologica:

Prove di portata ali gocciolanti pesanti

	N° erogatori Ore		Epoca di —	Tipologia di acque					
Nome prodotto	testati	complessive di funzionamento	campionamento –	FW			sw		
				Q I/h	CU %	EUf %	Q I/h	CU %	EUf %
Multibar C	25	175	Inizio stagione	2,10	95,9	95,9	2,32	96,0	98,2
SPERIMENTALE 16 mm	25	175	Fine stagione	2,21	95,7	95,8	2,26	96,3	96,9
Multibar C 16 mm	25	175	Inizio stagione	2,04	96,3	97,8	2,22	96,8	97,8
IVIUILIDAI C 10 MM	25	175	Fine stagione	2,16	96,7	97,1	2,13	96,5	97,9

Conclusioni

- Rischio microbiologico:
 - contaminazione da *E. coli* limitata al solo suolo.
 - nessun incremento significativo, a livello di suolo, in termini di Coliformi Totali e Carica Batterica Totale.
 - assenza di contaminazioni da parte di E. coli a livello sia di germogli sia di frutti.
 - l'acqua reflua è però in grado di influenzare il microbioma endofitico della pianta (germoglio, frutto).
- Performances fisiologiche:
 - nessuna differenza significativa, in termini di relazioni idriche, tra i trattamenti -> assenza di stress salino
 - resa e principali parametri qualitativi invariati tra il trattamento concimato (FW+F) e il refluo compensato (SW+F)
 - minore resa e precocità di maturazione per il trattamento irrigato con sola acqua reflua (SW)
- Risparmio di macroelementi:
 - Il refluo secondario SW sul pesco assicura un risparmio di N, P e K pari rispettivamente a 32, 8 e 98%
 - Il refluo terziario TW sul pomodoro garantisce un risparmio di N, P e K pari a 24, 0,4 e 74%.
- Efficienza idraulica-tecnologica:
 - Le acque reflue secondarie, a fine della stagione, determinano una diminuzione lieve delle portate medie degli erogatori
 - I coefficienti CU e EUf degli erogatori testati si attestano a valori ottimali superiori al 93,7%.

Questi dati, seppur facenti riferimento ad una singola stagione, sono comunque promettenti e incoraggiano ad un riuso della risorsa reflua in una ottica sempre più improntata all'economia circolare e alla sicurezza alimentare. tuttavia dovranno essere confrontati con quelli delle campagne agrarie successive affinché possano essere considerati affidabili e di validità generale.